1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
use crate::{recycling::{self, Recycle}, Core, Full, Ref, Slot, MAX_CAPACITY};
use alloc::boxed::Box;
use core::fmt;
#[cfg(all(loom, test))]
mod tests;
/// A fixed-size, lock-free, multi-producer multi-consumer (MPMC) queue.
///
/// This is a fixed-capacity, first-in, first-out data structure. Elements are
/// enqueued at the front of the queue by calling the [`push`] method, and
/// dequeued from the end of the queue by calling the [`pop`] method. Elements
/// may be enqueued and dequeued from a `ThingBuf` concurrently by any number of
/// threads or asynchronous tasks.
///
/// This queue is an implementation of a [design by Dmitry Vyukov][vyukov] of
/// 1024cores.net.
///
/// # Examples
///
/// ```
/// use thingbuf::ThingBuf;
///
/// let q = ThingBuf::new(2);
///
/// // Push some values to the queue.
/// q.push(1).unwrap();
/// q.push(2).unwrap();
///
/// // Now, the queue is at capacity.
/// assert!(q.push(3).is_err());
/// ```
///
/// # Allocation
///
/// A `ThingBuf` is a fixed-size, array-based queue. Elements in the queue are
/// stored in a single array whose capacity is specified when the `ThingBuf` is
/// constructed. This means that a `ThingBuf` requires only a single heap
/// allocation over its entire lifespan. Calling [`ThingBuf::new`] will allocate
/// an array to store `capacity` elements. Subsequent calls to [`push`] and
/// [`pop`] will never allocate or deallocate memory.
///
/// If the size of the queue is known at compile-time, the [`StaticThingBuf`]
/// type, which requires *no* heap allocations at all, can be used instead.
///
/// ## Reusing Allocations
///
/// Of course, if the *elements* in the queue are themselves heap-allocated
/// (such as `String`s or `Vec`s), heap allocations and deallocations may still
/// occur when those types are created or dropped. However, `ThingBuf` also
/// provides an API for enqueueing and dequeueing elements *by reference*. In
/// some use cases, this API can be used to reduce allocations for queue elements.
///
/// As an example, consider the case where multiple threads in a program format
/// log messages and send them to a dedicated worker thread that writes those
/// messages to a file. A naive implementation might look something like this:
///
/// ```rust
/// use thingbuf::ThingBuf;
/// use std::{sync::Arc, fmt, thread, fs::File, error::Error, io::Write};
///
/// // Called by application threads to log a message.
/// fn log_event(q: &Arc<ThingBuf<String>>, message: &dyn fmt::Debug) {
/// // Format the log line to a `String`.
/// let line = format!("{:?}\n", message);
/// // Send the string to the worker thread.
/// let _ = q.push(line);
/// // If the queue was full, ignore the error and drop the log line.
/// }
///
/// fn main() -> Result<(), Box<dyn Error>> {
/// # // wrap the actual code in a function that's never called so that running
/// # // the test never actually creates the log file.
/// # fn docs() -> Result<(), Box<dyn Error>> {
/// let log_queue = Arc::new(ThingBuf::<String>::new(1024));
///
/// // Spawn the background worker thread.
/// let q = log_queue.clone();
/// let mut file = File::create("myapp.log")?;
/// thread::spawn(move || {
/// use std::io::Write;
/// loop {
/// // Pop from the queue, and write each log line to the file.
/// while let Some(line) = q.pop() {
/// file.write_all(line.as_bytes()).unwrap();
/// }
///
/// // No more messages in the queue!
/// file.flush().unwrap();
/// thread::yield_now();
/// }
/// });
///
/// // ...
/// # Ok(())
/// # }
/// # Ok(())
/// }
/// ```
///
/// With this design, however, new `String`s are allocated for every message
/// that's logged, and then are immediately deallocated once they are written to
/// the file. This can have a negative performance impact.
///
/// Using `ThingBuf`'s [`push_ref`] and [`pop_ref`] methods, this code can be
/// redesigned to _reuse_ `String` allocations in place. With these methods,
/// rather than moving an element by-value into the queue when enqueueing, we
/// instead reserve the rights to _mutate_ a slot in the queue in place,
/// returning a [`Ref`]. Similarly, when dequeueing, we also recieve a [`Ref`]
/// that allows reading from (and mutating) the dequeued element. This allows
/// the queue to _own_ the set of `String`s used for formatting log messages,
/// which are cleared in place and the existing allocation reused.
///
/// The rewritten code might look like this:
///
/// ```rust
/// use thingbuf::ThingBuf;
/// use std::{sync::Arc, fmt, thread, fs::File, error::Error};
///
/// // Called by application threads to log a message.
/// fn log_event(q: &Arc<ThingBuf<String>>, message: &dyn fmt::Debug) {
/// use std::fmt::Write;
///
/// // Reserve a slot in the queue to write to.
/// if let Ok(mut slot) = q.push_ref() {
/// // Clear the string in place, retaining the allocated capacity.
/// slot.clear();
/// // Write the log message to the string.
/// write!(&mut *slot, "{:?}\n", message);
/// }
/// // Otherwise, if `push_ref` returns an error, the queue is full;
/// // ignore this log line.
/// }
///
/// fn main() -> Result<(), Box<dyn Error>> {
/// # // wrap the actual code in a function that's never called so that running
/// # // the test never actually creates the log file.
/// # fn docs() -> Result<(), Box<dyn Error>> {
/// let log_queue = Arc::new(ThingBuf::<String>::new(1024));
///
/// // Spawn the background worker thread.
/// let q = log_queue.clone();
/// let mut file = File::create("myapp.log")?;
/// thread::spawn(move || {
/// use std::io::Write;
/// loop {
/// // Pop from the queue, and write each log line to the file.
/// while let Some(line) = q.pop_ref() {
/// file.write_all(line.as_bytes()).unwrap();
/// }
///
/// // No more messages in the queue!
/// file.flush().unwrap();
/// thread::yield_now();
/// }
/// });
///
/// // ...
/// # Ok(())
/// # }
/// # Ok(())
/// }
/// ```
///
/// In this implementation, the strings will only be reallocated if their
/// current capacity is not large enough to store the formatted representation
/// of the log message.
///
/// When using a `ThingBuf` in this manner, it can be thought of as a
/// combination of a concurrent queue and an [object pool].
///
/// [`push`]: Self::push
/// [`pop`]: Self::pop
/// [`push_ref`]: Self::push_ref
/// [`pop_ref`]: Self::pop_ref
/// [`StaticThingBuf`]: crate::StaticThingBuf
/// [vyukov]: https://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
/// [object pool]: https://en.wikipedia.org/wiki/Object_pool_pattern
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub struct ThingBuf<T, R = recycling::DefaultRecycle> {
pub(crate) core: Core,
pub(crate) slots: Box<[Slot<T>]>,
recycle: R,
}
// === impl ThingBuf ===
impl<T: Default + Clone> ThingBuf<T> {
/// Returns a new `ThingBuf` with space for `capacity` elements.
#[must_use]
pub fn new(capacity: usize) -> Self {
Self::with_recycle(capacity, recycling::DefaultRecycle::new())
}
}
impl<T, R> ThingBuf<T, R> {
/// Returns the *total* capacity of this queue. This includes both
/// occupied and unoccupied entries.
///
/// To determine the queue's remaining *unoccupied* capacity, use
/// [`remaining`] instead.
///
/// # Examples
///
/// ```
/// use thingbuf::ThingBuf;
///
/// let q = ThingBuf::<usize>::new(100);
/// assert_eq!(q.capacity(), 100);
/// ```
///
/// Even after pushing several messages to the queue, the capacity remains
/// the same:
/// ```
/// # use thingbuf::ThingBuf;
///
/// let q = ThingBuf::<usize>::new(100);
///
/// *q.push_ref().unwrap() = 1;
/// *q.push_ref().unwrap() = 2;
/// *q.push_ref().unwrap() = 3;
///
/// assert_eq!(q.capacity(), 100);
/// ```
///
/// [`remaining`]: Self::remaining
#[inline]
pub fn capacity(&self) -> usize {
self.slots.len()
}
/// Returns the unoccupied capacity of the queue (i.e., how many additional
/// elements can be enqueued before the queue will be full).
///
/// This is equivalent to subtracting the queue's [`len`] from its [`capacity`].
///
/// [`len`]: Self::len
/// [`capacity`]: Self::capacity
pub fn remaining(&self) -> usize {
self.capacity() - self.len()
}
/// Returns the number of elements in the queue
///
/// To determine the queue's remaining *unoccupied* capacity, use
/// [`remaining`] instead.
///
/// # Examples
///
/// ```
/// use thingbuf::ThingBuf;
///
/// let q = ThingBuf::new(100);
/// assert_eq!(q.len(), 0);
///
/// *q.push_ref().unwrap() = 1;
/// *q.push_ref().unwrap() = 2;
/// *q.push_ref().unwrap() = 3;
/// assert_eq!(q.len(), 3);
///
/// let _ = q.pop_ref();
/// assert_eq!(q.len(), 2);
/// ```
///
/// [`remaining`]: Self::remaining
#[inline]
pub fn len(&self) -> usize {
self.core.len()
}
/// Returns `true` if there are currently no elements in this `ThingBuf`.
///
/// # Examples
///
/// ```
/// use thingbuf::ThingBuf;
///
/// let q = ThingBuf::new(100);
/// assert!(q.is_empty());
///
/// *q.push_ref().unwrap() = 1;
/// assert!(!q.is_empty());
///
/// let _ = q.pop_ref();
/// assert!(q.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<T, R> ThingBuf<T, R>
where
R: Recycle<T>,
{
/// Returns a new `ThingBuf` with space for `capacity` elements and
/// the provided [recycling policy].
///
/// # Panics
///
/// Panics if the capacity exceeds `usize::MAX & !(1 << (usize::BITS - 1))`. This value
/// represents the highest power of two that can be expressed by a `usize`, excluding the most
/// significant bit.
///
/// [recycling policy]: crate::recycling::Recycle
#[must_use]
pub fn with_recycle(capacity: usize, recycle: R) -> Self {
assert!(capacity > 0);
assert!(capacity <= MAX_CAPACITY);
Self {
core: Core::new(capacity),
slots: Slot::make_boxed_array(capacity),
recycle,
}
}
/// Reserves a slot to push an element into the queue, returning a [`Ref`] that
/// can be used to write to that slot.
///
/// This can be used to reuse allocations for queue elements in place,
/// by clearing previous data prior to writing. In order to ensure
/// allocations can be reused in place, elements should be dequeued using
/// [`pop_ref`] rather than [`pop`]. If values are expensive to produce,
/// `push_ref` can also be used to avoid producing a value if there is no
/// capacity for it in the queue.
///
/// For values that don't own heap allocations, or heap allocated values
/// that cannot be reused in place, [`push`] can also be used.
///
/// # Returns
///
/// - `Ok(`[`Ref`]`)` if there is space for a new element
/// - `Err(`[`Full`]`)`, if there is no capacity remaining in the queue
///
/// # Examples
///
/// ```rust
/// use thingbuf::ThingBuf;
///
/// let q = ThingBuf::new(1);
///
/// // Reserve a `Ref` and enqueue an element.
/// *q.push_ref().expect("queue should have capacity") = 10;
///
/// // Now that the queue has one element in it, a subsequent `push_ref`
/// // call will fail.
/// assert!(q.push_ref().is_err());
/// ```
///
/// Avoiding producing an expensive element when the queue is at capacity:
///
/// ```rust
/// use thingbuf::ThingBuf;
///
/// #[derive(Clone, Default)]
/// struct Message {
/// // ...
/// }
///
/// fn make_expensive_message() -> Message {
/// // Imagine this function performs some costly operation, or acquires
/// // a limited resource...
/// # Message::default()
/// }
///
/// fn enqueue_message(q: &ThingBuf<Message>) {
/// loop {
/// match q.push_ref() {
// // If `push_ref` returns `Ok`, we've reserved a slot in
/// // the queue for our message, so it's okay to generate
/// // the expensive message.
/// Ok(mut slot) => {
/// *slot = make_expensive_message();
/// return;
/// },
///
/// // If there's no space in the queue, avoid generating
/// // an expensive message that won't be sent.
/// Err(_) => {
/// // Wait until the queue has capacity...
/// std::thread::yield_now();
/// }
/// }
/// }
/// }
/// ```
///
/// [`pop`]: Self::pop
/// [`pop_ref`]: Self::pop_ref
/// [`push`]: Self::push_ref
pub fn push_ref(&self) -> Result<Ref<'_, T>, Full> {
self.core
.push_ref(&self.slots, &self.recycle)
.map_err(|e| match e {
crate::mpsc::errors::TrySendError::Full(()) => Full(()),
_ => unreachable!(),
})
}
/// Attempt to enqueue an element by value.
///
/// If the queue is full, the element is returned in the [`Full`] error.
///
/// Unlike [`push_ref`], this method does not enable the reuse of previously
/// allocated elements. If allocations are being reused by using
/// [`push_ref`] and [`pop_ref`], this method should not be used, as it will
/// drop pooled allocations.
///
/// # Returns
///
/// - `Ok(())` if the element was enqueued
/// - `Err(`[`Full`]`)`, containing the value, if there is no capacity
/// remaining in the queue
///
/// [`push_ref`]: Self::push_ref
/// [`pop_ref`]: Self::pop_ref
#[inline]
pub fn push(&self, val: T) -> Result<(), Full<T>> {
match self.push_ref() {
Err(_) => Err(Full(val)),
Ok(mut slot) => {
*slot = val;
Ok(())
}
}
}
/// Reserves a slot to push an element into the queue, and invokes the
/// provided function `f` with a mutable reference to that element.
///
/// # Returns
///
/// - `Ok(U)` containing the return value of the provided function, if the
/// element was enqueued
/// - `Err(`[`Full`]`)`, if there is no capacity remaining in the queue
#[inline]
pub fn push_with<U>(&self, f: impl FnOnce(&mut T) -> U) -> Result<U, Full> {
self.push_ref().map(|mut r| r.with_mut(f))
}
/// Dequeue the first element in the queue, returning a [`Ref`] that can be
/// used to read from (or mutate) the element.
///
/// **Note**: A `ThingBuf` is *not* a "broadcast"-style queue. Each element
/// is dequeued a single time. Once a thread has dequeued a given element,
/// it is no longer the head of the queue.
///
/// This can be used to reuse allocations for queue elements in place,
/// by clearing previous data prior to writing. In order to ensure
/// allocations can be reused in place, elements should be enqueued using
/// [`push_ref`] rather than [`push`].
///
/// For values that don't own heap allocations, or heap allocated values
/// that cannot be reused in place, [`pop`] can also be used.
///
/// # Returns
///
/// - `Some(`[`Ref<T>`](Ref)`)` if an element was dequeued
/// - `None` if there are no elements in the queue
///
/// [`push_ref`]: Self::push_ref
/// [`push`]: Self::push
/// [`pop`]: Self::pop
pub fn pop_ref(&self) -> Option<Ref<'_, T>> {
self.core.pop_ref(&self.slots).ok()
}
/// Dequeue the first element in the queue *by value*, moving it out of the
/// queue.
///
/// **Note**: A `ThingBuf` is *not* a "broadcast"-style queue. Each element
/// is dequeued a single time. Once a thread has dequeued a given element,
/// it is no longer the head of the queue.
///
/// # Returns
///
/// - `Some(T)` if an element was dequeued
/// - `None` if there are no elements in the queue
#[inline]
pub fn pop(&self) -> Option<T> {
let mut slot = self.pop_ref()?;
Some(recycling::take(&mut *slot, &self.recycle))
}
/// Dequeue the first element in the queue by reference, and invoke the
/// provided function `f` with a mutable reference to the dequeued element.
///
/// # Returns
///
/// - `Some(U)` containing the return value of the provided function, if the
/// element was dequeued
/// - `None` if the queue is empty
#[inline]
pub fn pop_with<U>(&self, f: impl FnOnce(&mut T) -> U) -> Option<U> {
self.pop_ref().map(|mut r| r.with_mut(f))
}
}
impl<T, R> Drop for ThingBuf<T, R> {
fn drop(&mut self) {
self.core.drop_slots(&mut self.slots[..]);
}
}
impl<T, R: fmt::Debug> fmt::Debug for ThingBuf<T, R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ThingBuf")
.field("len", &self.len())
.field("slots", &format_args!("[...]"))
.field("core", &self.core)
.field("recycle", &self.recycle)
.finish()
}
}