1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! Configurable policies for element reuse.

/// A policy defining how pooled elements of type `T` are reused.
///
/// A recycling policy provides two operations: [`Recycle::new_element`], which
/// defines how new elements of type `T` are *initially* constructed, and
/// [`Recycle::recycle`], which, given an `&mut T`, prepares that element for
/// reuse.
///
/// This trait is intended to allow defining custom policies to reuse values
/// that are expensive to create or destroy. If a type `T` owns a large memory
/// allocation or other reuseable resource (such as a file descriptor, network
/// connection, worker thread, et cetera), the [`recycle`](Self::recycle)
/// operation can clear any *data* associated with a particular use of that
/// value while retaining its memory allocation or other resources. For example,
/// the [`WithCapacity`] recycling policy clears standard library collections
/// such as `String` and `Vec` in place, retaining their allocated heap
/// capacity, so that future uses of those collections do not need to
/// reallocate.
pub trait Recycle<T> {
    /// Returns a new instance of type `T`.
    ///
    /// This method will be called to populate the pool with the initial set of
    /// elements. It may also be called if an element is permanently removed
    /// from the pool and will not be returned.
    fn new_element(&self) -> T;

    /// Prepares `element` element for reuse.
    ///
    /// Typically, this clears any data stored in `element` in place, but
    /// retains any previous heap allocations owned by `element` so that they
    /// can be used again.
    ///
    /// This method is called when a `T` value is returned to the pool that owns
    /// it.
    fn recycle(&self, element: &mut T);
}

/// A [`Recycle`] implementation for any type implementing [`Default`] and
/// [`Clone`].
///
/// This [creates new elements] by calling using [`Default::default()`].
/// Existing elements are [recycled] by calling [`Clone::clone_from`] with the
/// default value.
///
/// # Allocation Reuse
///
/// [`Clone::clone_from`] is not *guaranteed* to reuse existing
/// allocations in place. For a number of common types in the standard library,
/// such as [`Box`], [`String`], [`Vec`], and collections based on [`Vec`] (such
/// as [`VecDeque`] and [`BinaryHeap`]), `clone_from` is overridden to reuse
/// existing allocations in place. However, other types may not override
/// `clone_from` in this way.
///
/// `DefaultRecycle` will always *work* for types that implement [`Default`] and
/// [`Clone`], but it cannot be guaranteed to always reuse allocations. For a
/// more restrictive [`Recycle`] implementation that _will_ always reuse
/// existing allocations, consider [`WithCapacity`].
///
/// [creates new elements]: DefaultRecycle::new_element
/// [recycled]: DefaultRecycle::recycle
#[derive(Clone, Debug, Default)]
pub struct DefaultRecycle(());

/// A [`Recycle`] implementation for types that provide `with_capacity`,
/// `clear`, and `shrink_to` methods.
///
/// This includes all array-based collections in the Rust standard library, such
/// as [`Vec`], [`String`], [`VecDeque`], and [`BinaryHeap`], as well as
/// [`HashMap`] and [`HashSet`].
///
/// # Usage
///
/// By default, this type will always [recycle] elements by clearing all values
/// in place, returning all allocated capacity. [New elements] are allocated
/// with capacity for 0 values; they will allocate when first used.
///
/// # Implementations for Other Types
///
/// [`Recycle`] implementations may be added for similar data structures
/// implemented in other libraries. The [`min_capacity`] and
/// [`max_capacity`] methods expose the configured initial capacity and upper
/// bound.
///
/// As an example, a library that implements an array-based data structure with
/// `with_capacity`, `clear`, and `shrink_to` methods can implement [`Recycle`]
/// for `WithCapacity` like so:
///
/// ```
/// use thingbuf::recycling::{self, Recycle};
/// # use std::marker::PhantomData;
///
/// /// Some kind of exciting new heap-allocated collection.
/// pub struct MyCollection<T> {
///     // ...
///     # _p: PhantomData<T>,
/// }
///
/// impl<T> MyCollection<T> {
///     /// Returns a new `MyCollection` with enough capacity to hold
///     /// `capacity` elements without reallocationg.
///     pub fn with_capacity(capacity: usize) -> Self {
///         // ...
///         # unimplemented!()
///     }
///
///     /// Returns the current allocated capacity of this `MyCollection`.
///     pub fn capacity(&self) -> usize {
///         // ...
///         # unimplemented!()
///     }
///
///     /// Shrinks the capacity of the `MyCollection` with a lower bound.
///     ///
///     /// The capacity will remain at least as large as both the length
///     /// and the supplied value.
///     ///
///     /// If the current capacity is less than the lower limit, this is a no-op.
///     pub fn shrink_to(&mut self, min_capacity: usize) {
///         if self.capacity() > min_capacity {
///             // ...
///             # unimplemented!()
///         }
///     }
///
///     /// Clears the `MyCollection`, removing all values.
///     ///
///     /// This does not change the current allocated capacity. The
///     /// `MyCollection` will still have enough allocated storage to hold
///     /// at least the current number of values.
///     pub fn clear(&mut self) {
///         // ...
///         # unimplemented!()
///     }
///
///     // Other cool and exciting methods go here!
/// }
///
/// // Because `MyCollection<T>` has `with_capacity`, `shrink_to`, and `clear` methods,
/// // we can implement `Recycle<MyCollection<T>>` for `WithCapacity` exactly the same
/// // way as it is implemented for standard library collections.
/// impl<T> Recycle<MyCollection<T>> for recycling::WithCapacity {
///     fn new_element(&self) -> MyCollection<T> {
///         // Allocate a new element with the minimum initial capacity:
///         MyCollection::with_capacity(self.min_capacity())
///     }
///
///     fn recycle(&self, element: &mut MyCollection<T>) {
///         // Recycle the element by clearing it in place, and then limiting the
///         // allocated capacity to the upper bound, if one is set:
///         element.clear();
///         element.shrink_to(self.max_capacity());
///     }
/// }
/// ```
///
/// # Allocation Reuse
///
/// When an upper bound is not set, this recycling policy will _always_ reuse
/// any allocated capacity when recycling an element. Over time, the number of
/// reallocations required to grow items in a pool should decrease, amortizing
/// reallocations over the lifetime of the program.
///
/// Of course, this means that it is technically possible for the allocated
/// capacity of the pool to grow infinitely, which can cause a memory leak if
/// used incorrectly. Therefore, it is also possible to set an upper bound on
/// idle capacity, using [`with_max_capacity`]. When such a bound is set,
/// recycled elements will be shrunk down to that capacity if they have grown
/// past the upper bound while in use. If this is the case, reallocations may
/// occur more often, but if the upper bound is higher than the typical required
/// capacity, they should remain infrequent.
///
/// If elements will not require allocations of differing sizes, and the size is
/// known in advance (e.g. a pool of `HashMap`s that always have exactly 64
/// elements), the [`with_max_capacity`] and [`with_min_capacity`] methods can
/// be called with the same value. This way, elements will always be initially
/// allocated with *exactly* that much capacity, and will only be shrunk if they
/// ever exceed that capacity. If the elements never grow beyond the specified
/// capacity, this should mean that no additional allocations will ever occur
/// once the initial pool of elements are allocated.
///
/// [recycle]: Recycle::recycle
/// [`max_capacity`]: Self::max_capacity
/// [`min_capacity`]: Self::min_capacity
/// [`with_max_capacity`]: Self::with_max_capacity
/// [`with_min_capacity`]: Self::with_min_capacity
#[derive(Clone, Debug)]
pub struct WithCapacity {
    min: usize,
    max: usize,
}

// TODO(eliza): consider making this public?
// TODO(eliza): consider making this a trait method with a default impl?
#[inline(always)]
pub(crate) fn take<R, T>(element: &mut T, recycle: &R) -> T
where
    R: Recycle<T>,
{
    core::mem::replace(element, recycle.new_element())
}

impl DefaultRecycle {
    /// Returns a new `DefaultRecycle`.
    pub const fn new() -> Self {
        Self(())
    }
}

impl<T> Recycle<T> for DefaultRecycle
where
    T: Default + Clone,
{
    fn new_element(&self) -> T {
        T::default()
    }

    fn recycle(&self, element: &mut T) {
        element.clone_from(&T::default())
    }
}

// === impl WithCapacity ===

impl WithCapacity {
    /// Returns a new [`WithCapacity`].
    ///
    /// By default, the maximum capacity is unconstrained, and the minimum
    /// capacity is 0. Existing allocations will always be reused, regardless
    /// of size, and new elements will be created with 0 capacity.
    ///
    /// To add an upper bound on re-used capacity, use
    /// [`WithCapacity::with_max_capacity`]. To allocate elements with an
    /// initial capacity, use [`WithCapacity::with_min_capacity`].
    pub const fn new() -> Self {
        Self {
            max: core::usize::MAX,
            min: 0,
        }
    }

    /// Sets an upper bound on the capacity that will be reused when [recycling]
    /// elements.
    ///
    /// When an element is recycled, if its capacity exceeds the max value, it
    /// will be shrunk down to that capacity. This will result in a
    /// reallocation, but limits the total capacity allocated by the pool,
    /// preventing unbounded memory use.
    ///
    /// Elements may still exceed the configured max capacity *while they are in
    /// use*; this value only configures what happens when they are returned to
    /// the pool.
    ///
    /// # Examples
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// // Create a recycler with max capacity of 8.
    /// let recycle = WithCapacity::new().with_max_capacity(8);
    ///
    /// // Create a new string using that recycler.
    /// let mut s: String = recycle.new_element();
    /// assert_eq!(s.capacity(), 0);
    ///
    /// // Now, write some data to the string.
    /// s.push_str("hello, world");
    ///
    /// // The string's capacity must be at least the length of the
    /// // string 'hello, world'.
    /// assert!(s.capacity() >= "hello, world".len());
    ///
    /// // After recycling the string, its capacity will be shrunk down
    /// // to the configured max capacity.
    /// recycle.recycle(&mut s);
    /// assert_eq!(s.capacity(), 8);
    /// ```
    ///
    /// [recycling]: Recycle::recycle
    pub const fn with_max_capacity(self, max: usize) -> Self {
        Self { max, ..self }
    }

    /// Sets the minimum capacity when [allocating new elements][new].
    ///
    /// When new elements are created, they will be allocated with at least
    /// `min` capacity.
    ///
    /// Note that this is a *lower bound*. Elements may be allocated with
    /// greater than the minimum capacity, depending on the behavior of the
    /// element being allocated, but there will always be *at least* `min`
    /// capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// // A recycler without a minimum capacity.
    /// let no_min = WithCapacity::new();
    ///
    /// // A new element created by this recycler will not
    /// // allocate any capacity until it is used.
    /// let s: String = no_min.new_element();
    /// assert_eq!(s.capacity(), 0);
    ///
    /// // Now, configure a minimum capacity.
    /// let with_min = WithCapacity::new().with_min_capacity(8);
    ///
    /// // New elements created by this recycler will always be allocated
    /// // with at least the specified capacity.
    /// let s: String = with_min.new_element();
    /// assert!(s.capacity() >= 8);
    /// ```
    ///
    /// [new]: Recycle::new_element
    pub const fn with_min_capacity(self, min: usize) -> Self {
        Self { min, ..self }
    }

    /// Returns the minimum initial capacity when [allocating new
    /// elements][new].
    ///
    /// This method can be used to implement `Recycle<T> for WithCapacity` where
    /// `T` is a type defined outside of this crate. See [the `WithCapacity`
    /// documentation][impling] for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// let recycle = WithCapacity::new();
    /// assert_eq!(recycle.min_capacity(), 0);
    /// ```
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// let recycle = WithCapacity::new().with_min_capacity(64);
    /// assert_eq!(recycle.min_capacity(), 64);
    /// ```
    ///
    /// [new]: Recycle::new_element
    /// [impling]: WithCapacity#implementations-for-other-types
    pub fn min_capacity(&self) -> usize {
        self.min
    }

    /// Returns the maximum retained capacity when [recycling
    /// elements][recycle].
    ///
    /// If no upper bound is configured, this will return [`usize::MAX`].
    ///
    /// This method can be used to implement `Recycle<T> for WithCapacity` where
    /// `T` is a type defined outside of this crate. See [the `WithCapacity`
    /// documentation][impling] for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// let recycle = WithCapacity::new();
    /// assert_eq!(recycle.max_capacity(), usize::MAX);
    /// ```
    ///
    /// ```
    /// use thingbuf::recycling::{Recycle, WithCapacity};
    ///
    /// let recycle = WithCapacity::new().with_max_capacity(64);
    /// assert_eq!(recycle.max_capacity(), 64);
    /// ```
    ///
    /// [recycle]: Recycle::recycle
    /// [impling]: WithCapacity#implementations-for-other-types
    pub fn max_capacity(&self) -> usize {
        self.max
    }
}

impl Default for WithCapacity {
    fn default() -> Self {
        Self::new()
    }
}

feature! {
    #![feature = "alloc"]
    use alloc::{
        collections::{VecDeque, BinaryHeap},
        string::String,
        sync::Arc,
        vec::Vec,
    };

    impl<T, R> Recycle<T> for Arc<R>
    where
        R: Recycle<T>,
    {
        #[inline]
        fn new_element(&self) -> T {
            (**self).new_element()
        }

        #[inline]
        fn recycle(&self, element: &mut T) {
            (**self).recycle(element)
        }
    }

    impl<T> Recycle<Vec<T>> for WithCapacity {
        fn new_element(&self) -> Vec<T> {
            Vec::with_capacity(self.min)
        }

        fn recycle(&self, element: &mut Vec<T>) {
            element.clear();
            element.shrink_to(self.max);
        }
    }

    impl Recycle<String> for WithCapacity {
        fn new_element(&self) -> String {
            String::with_capacity(self.min)
        }

        fn recycle(&self, element: &mut String) {
            element.clear();
            element.shrink_to(self.max);
        }
    }

    impl<T> Recycle<VecDeque<T>> for WithCapacity {
        fn new_element(&self) -> VecDeque<T> {
            VecDeque::with_capacity(self.min)
        }

        fn recycle(&self, element: &mut VecDeque<T>) {
            element.clear();
            element.shrink_to(self.max);
        }
    }

    impl<T: core::cmp::Ord> Recycle<BinaryHeap<T>> for WithCapacity {
        fn new_element(&self) -> BinaryHeap<T> {
            BinaryHeap::with_capacity(self.min)
        }

        fn recycle(&self, element: &mut BinaryHeap<T>) {
            element.clear();
            element.shrink_to(self.max);
        }
    }
}

feature! {
    #![feature = "std"]
    use std::{hash::{Hash, BuildHasher}, collections::{HashMap, HashSet}};

    impl<K, V, S> Recycle<HashMap<K, V, S>> for WithCapacity
    where
        K: Hash + Eq,
        S: BuildHasher + Default
    {
        fn new_element(&self) -> HashMap<K, V, S> {
            HashMap::with_capacity_and_hasher(self.min, Default::default())
        }

        fn recycle(&self, element: &mut HashMap<K, V, S>) {
            element.clear();
            element.shrink_to(self.max);
        }
    }

    impl<K, S> Recycle<HashSet<K, S>> for WithCapacity
    where
        K: Hash + Eq,
        S: BuildHasher + Default
    {
        fn new_element(&self) -> HashSet<K, S> {
            HashSet::with_capacity_and_hasher(self.min, Default::default())
        }

        fn recycle(&self, element: &mut HashSet<K, S>) {
            element.clear();
            element.shrink_to(self.max);
        }
    }
}